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Abstract  

Near-field, near real-time and predictive air quality modelling and 
management systems were first adopted by mining, minerals processing, 
wastewater treatment and governmental organisations 10 to 15 years ago to 
drive improvements in air quality management. In that time, the amount of 
continuous monitoring data available has also increased, allowing for the 
possibility of more automated identification and calculation of emissions from 
facilities. Automated calculation of emissions, if sufficiently accurate, can 
deliver both rapid identification of the location of current or emerging air quality 
issues, as well as improved accuracy of emission rates used in real-time or 
predictive modelling. 

This paper describes an approach to source characterisation and emission 
estimation that uses continuous ambient air quality data and spatial data to 
back-calculate flux of emissions from a gridded field. The method used 
recalculates concentration data as gridded data to represent a concentration 
on all four sides (or faces) of each defined source or sub-source. Emissions 
for the sources are then calculated using a modified version of the model, 
where x- and y-components of the wind are separately used for emission 
estimation.  

Two examples are presented in this paper 1) The “Gridding method” where 
emissions are highly variable in time and space over a large area where there 
is an extensive monitoring network (mine). 2) A “Simple method” applied for 
smaller, simpler sources where the monitoring network is inadequate to 
produce an accurate gridded field (port). 

Keywords:  Automated emissions calculation

1. Introduction 

Near-field, near real-time and predictive air quality 
modelling and management systems were first 
adopted by mining, minerals processing, wastewater 
treatment and governmental organisations 10 to 15 
years ago to drive improvements in air quality 
management.  

Initially, monitoring, if present at all, was limited to 
one or a few regulatory standard (i.e. higher 
accuracy) monitors at each site. The focus of 
monitoring was traditionally regulatory reporting, 
with reports prepared at periodic intervals for 
inclusion in corporate reporting or submission to 
local regulators. 

Over time, a greater number of lower-cost air quality 
monitoring devices became available, with improved 
reliability and accuracy and improved understanding 
of how best to manage the limitations of those types 
of devices (Carotenuto et. al., 2023). At the same 
time, the costs of cloud-based computing and 
storage decreased, and most air quality monitoring 
networks are these days available for near real-time 
access.  

It is now much more common to see individual sites 
with relatively dense monitoring networks, or the 
willingness to invest in these networks to support an 
improvement in on-site air quality management. 
Similarly, regulatory authorities globally are 
investigating how best to complement the devices 
that they do have with denser networks of low-cost 
devices (e.g., Shatas & Hubbell, 2022). 

Given the availability of air quality data, new 
possibilities for improved air quality management 
have emerged. To this end, the paper describes the 
theory of how data from multiple ambient monitoring 
devices can be used to identify and calculate 
emissions sources across an industrial site and then 
discusses the results of a subset of validation studies 
used in designing a commercial air quality 
management solution based on that science. Finally, 
the paper describes some of the key aspects design 
required to successfully apply the solution in 
practice. 
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2. Objective 

The objective of applying the methods described in 
this paper were to: 

• Rapidly and easily identify the location and 
magnitude of area based, non-buoyant 
emission sources across an industrial 
facility. It was important to be able to identify 
both known and unknown sources. 

• Estimate emissions at a resolution useful for 
near real-time input into a dispersion model 
that significantly improves calculation of off-
site impacts.  

3. Methodology 

The approach used comprises the sequential 
application of two key elements, gridding and 
emissions modelling, which are both described in 
this section. 

3.1. Gridding 

The monitoring data at most industrial operations is 
scattered across the facility area in an irregular 
distribution. This results in some areas having 
excellent monitor coverage whereas other areas do 
not have adequate coverage. The initial step of the 
calculation process therefore involves resolving 
monitored emissions into a regular, gridded 
distribution using the Kriging approach. 

Kriging is the most used geostatistical approach for 
gridding data and relies on a spatial model between 
observations to predict attribute values at 
unsampled locations. More specifically, Kriging fits a 
mathematical function to points within a specified 
radius to determine the output value for each 
location. The general formula for Kriging is given as 
a weighted sum of the data: 

 

Ẑ(𝑠0) =  ∑ 𝜆𝑖𝑍𝑠𝑖
𝑁
𝑖=1            (1) 

Where: 

Ẑ(s0) = The total emissions from the area 

N = The number of measured values 

λi = A weighting factor based on the 
distance between the measured points 
and the prediction location and the 
overall spatial arrangement of the 
measured points 

Ẑ(si) = The measured value at location i 

 

3.2. Emissions modelling 

The gridded distribution then forms the basis of 
emissions modelling from each individual area 
source. The area is converted to a grid and 
emissions are calculated using a flux model 
approach. 

 

Surface flux models are based on the conservation 
of mass and consists of multiple cubes placed over 
the source’s surface to capture the emissions (Arya, 
1999; Flocchini, et al., 2001). The emissions are 
subsequently transported through the downwind end 
of the box. Concentration measurements are made 
on the upwind and downwind ends of the box, with 
the net concentrations assumed to represent the 
contribution made by sources within each cube. A 
small-scale modification of the model was 
implemented where mass balances were performed 
using both u and v wind components. The equation 
below shows how the flux is calculated using this 
model.  

𝑄𝐴 = [
U × y × h × C 

x × y
] + [

V × y × h × C 

x × y
]       (2) 

Where: 

QA = Emission flux μg/m2.s 

U = Measured u-component of 
wind  

m/s 

V = Measured u-component of 
wind  

m/s 

h = Plume height  m 

C = Net measured concentration 
(less background) 

μg/m3 

x = Upwind length of the box m 

 

Given concentration data across a network of 
sensors and representative wind speed and wind 
direction data across the monitoring area, it is 
therefore possible to calculate the flux of emissions 
from each predefined grid square across the area. 

3.3. Case studies 

Two case studies where this approach has been 
applied and assessed are shared in this paper – a 
mine (18 monitors) and a port (10 monitors). In both 
cases, hourly calculated emission rates and ambient 
concentrations are compared with measured 
concentrations.  

4. Results 

Calculated emission rates (g/m2/s) were investigated 
for a large mining area and a more compact port.  

4.1. Mine 

The monitoring data over the mine was gridded, 
transforming the mine into equal areas (Figure 1). 
The emission rates for each area were calculated 
according to Equation 1. Figure 2 shows calculated 
area emissions flux for a snapshot in time. Activity-
based emissions are clearly evident in the figure.  

The accuracy of the calculated emissions was tested 
by comparing modelled and measured 24-hour 
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average and 1-hour maximum PM10 concentration at 
the ambient monitors (Figure 3). The model predicts 
both 24-hour average and 1-hour maxima well at 
monitors 1, 2, and 4. The model underprediction at 
the more distant Monitor 3. This is most likely due to 
other unaccounted for sources in the area. 

Correlation fields between calculated area emission 
fluxes and Monitor 1 is presented in Figure 4. 
Significant positive correlations occur between 
emission rates over the western parts of the mine 
and ambient concentrations at the monitor.  

 

Figure 1: Gridded source areas 

 

 
Figure 2: Calculated emissions rates at a mine 

 

 
Figure 3: Modelled versus measured 24-hour 

average (top) and maximum 1-hour concentration 
(bottom). 

 
Figure 4: Correlation fields of calculated emissions 

and PM10 concentration at Monitor 1 
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The ordinary least squares (OLS) method is a 
statistical procedure to find the best fit for a set of 
data points by minimising the sum of the offsets or 
residuals of points from the plotted curve and 
provides the overall rationale for the placement of 
the line of best fit among the data points being 
studied. The coefficient for each explanatory 
variable reflects both the strength and type of 
relationship the explanatory variable has to the 
dependent variable. When the sign associated with 
the coefficient is negative, the relationship is 
negative, and when the sign is positive, the 
relationship is positive. For a 95 percent confidence 
level, a p-value (probability) smaller than 0.05 
indicates a statistically significant model.  

Table 1 shows the coefficients (significant at the 95 
per cent level) between various meteorological 
variable and emission source areas (Figure 1): 

• Pressure, wind speed, u- and v-components 
of wind, relative humidity and certain 
emission areas have significant coefficients 
at Monitor 1. The results suggest increased 
ambient PM10 concentrations occurring with 
increased pressure and increased v-
component of wind, decreased wind speed, 
u-component (easterly), and relative 
humidity. Higher PM10 concentrations are 
related to increased emissions in areas to 
the north of the site. A correlation coefficient 
of 0.86 indicates a good performance of the 
data in the OLS model.  

• At the Monitor 2, significant coefficients 
occur with emissions from two main areas of 
the mine. A correlation coefficient of 0.78 
indicates a good performance of the data in 
the OLS model.  

• Relative humidity and temperature areas 
have significant positive OLS coefficients at 
Monitor 4, indicating increased PM10 
concentration with increased relative 
humidity and temperature. Conversely, 
pressure, wind speed and v- (north-south) 
component of wind have significant negative 
OLS coefficients. This suggests increased 
ambient PM10 measurement at the monitor 
with lower atmospheric pressure and 
increased northerly wind component. A 
correlation coefficient of 0.98 indicates 
excellent performance of the data in the OLS 
model. 

4.2. Port 

The calculated near-surface emission fluxes from a 
fictional port were determined from a network of 
monitors shown in Figure 5. Three potential sources 
of PM10 emissions were proposed to allow for 
potential targeted mitigation responses.  

Figure 6 shows the calculated emission rates from 
the three areas, with Area A producing significantly 
higher emissions, followed by Area C. This is most 
likely reflecting activity-based emissions occurring 
over certain parts of the port.  

 

Table 1: Significant coefficients from the OLS model 

Monitor 1 Monitor 2 Monitor 4 

Press. 0.6 Area44 2.0 RH 1.1 

Wspd -0.4 Area56 0.6 Press. -0.5 

U-comp -0.2 Area134 0.8 Temp 4.7 

V-comp 0.3 Area182 0.9 Wspd -1.9 

RH -0.4 Area183 1.0 V-comp -0.9 

Area165 1.6   Area44 2.6 

Area263 3.7   Area75 0.5 

    Area76 0.6 

    Area110 0.3 

    Area30 2.2 

    Area172 3.0 

    Area188 8.6 

    Area149 13.8 

    Area214 24.5 

    Area147 10.2 

corr 0.86 corr 0.78 corr 0.98 

 

 
Figure 5: Ambient monitors and potential sources 

at a port. 
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Figure 6: Calculated emissions rates at a port 

Correlation fields between calculated emissions 
from Area A and gridded ambient PM10 
concentration is shown in Figure 7. Highest 
correlation coefficients of 0.4 are found immediately 
to the west and northwest of the port area, with areas 
of significant positive correlations extending along 
the entire eastern length of the port. There is a lack 
of correlation between emissions and PM10 
concentration to the south, reflecting the prevailing 
winds in the area. 

Correlation fields between Area B and gridded 
ambient monitors shows highest correlation of 0.5 
occurring immediately to the east of the source area 
(Figure 8). 

 

 
Figure 7: Correlation fields of calculated emissions 

(Area A) and ambient monitor concentrations 

 
Figure 8: Correlation fields of calculated emissions 

(Area B) and ambient monitor concentrations 

Correlation fields between calculated emissions 
from Area C (hatched) and gridded ambient PM10 

concentration is shown in Figure 9. As expected, 
highest positive correlations are found immediately 
adjacent to Area C although significant correlations 
(>0.2) occur across the northern part of the domain. 
There is again a lack of correlation between 
emissions and PM10 concentration to the south. 

 
Figure 9: Correlation fields of calculated emissions 

(Area C) and ambient monitor concentrations 

Table 2 show the OLS coefficients (significant at the 
95 per cent level) at selected ambient monitors 
between various meteorological variables and 
emission source areas.  
• Monitor 1 has higher ambient PM10 

concentrations associated with westerly and 
northerly wind components, and emissions from 
Area B (central part of the port). A correlation 
coefficient of 0.77 indicates relatively good 
performance of the data in the OLS model.  

• Monitor 2 has higher ambient PM10 
concentrations associated with easterly and 
southerly component winds, and emissions from 
Area A (southern part of port). A correlation 
coefficient of 0.86 indicates good performance of 
the data in the OLS model.   

• Monitor 3 has higher ambient PM10 
concentrations associated with strong, and 
easterly component winds, and emissions from 
Area B (central part of port). A correlation 
coefficient of 0.78 indicates relatively good 
performance of the data in the OLS model.  

• Monitor 4 has higher ambient PM10 

concentrations associated with strong winds, 
and emissions from Area A (southern part of 
port). A correlation coefficient of 0.81 indicates 
relatively good performance of the data in the 
OLS model. A 
 

Table 2: Significant coefficients from the OLS model 
– port  

 Monitor 
1 

Monitor 
2 

Monitor 
3 

Monitor 
4 

Area A - 0.01 - 0.02 

Area B 0.02 - 0.03 - 
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Area C - - - - 

Wind speed - 5.94 13.11 7.21 

u 8.63 -5.85 -13.12 - 

v -1.27 3.21 - - 

Correlation 0.77 0.86 0.78 0.81 

5. Discussion 

The results of this initial work are important in the 
field of real-time and predictive air quality 
management for several reasons. The initial results 
provided confidence that a much-improved 
representation of emissions from area-based, non-
buoyant sources could be achieved, compared with 
traditional emission factor / activity-based 
approaches. 

Once automated, visualised and integrated with 
alerting and response capabilities, the calculations 
of emissions in near real-time provides improved 
insights into current operations – namely the likely 
source of elevated impacts. If there is improved 
confidence in level of emissions across the site, it 
can be much easier to deploy control to the correct 
area and have the largest possible effect in reducing 
offsite impacts. A more accurate representation of 
emission rate can also significantly improve the 
accuracy of modelled impacts and leads to greater 
confidence in modelled based solutions. 

These early results provided confidence that using a 
flux model and gridded approach would be a useful 
basis for new visualisation tools for air quality 
management at mines, ports and other industrial 
facilities where sufficient numbers of monitors are 
available.  

The number of monitors needed depends on the 
type and scale of the site, as well as the intended 
use of the data. In some cases, it may be sufficient 
to use a few monitors and represent emissions from 
the site as a whole, or only some key emission 
sources. In other cases, are much higher resolution 
of monitors is needed to be able to differentiate 
between the different sources at a facility. It is also 
important to note that this approach only applies to 
non-buoyant sources. A site with a mixture of stack 
and area sources would need another method of 
understanding emissions from the site as a whole.  

 

 

Figure 10: Automated area-based emission visualised 
for real-time and predictive management applications 

6. Conclusions  

This paper described an approach to source 
characterisation and emission estimation that uses 
continuous ambient air quality data, meteorological 
data and spatial data to back-calculate flux of 
emissions from a gridded field. The results of 
modelled impacts using emissions calculated in this 
new approach showed good correlation with 
measured data at both a mine and port. 

Ultimately, this work led to further validation and 
calibration work with a number of sites around the 
world and the development of new real-time air 
quality management functionality within 
Envirosuite’s product suite. The underlying 
methodology and visualisation of data will be 
improved as initial customer engagements progress 
and the number of projects are expanded. 
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