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Abstract
This study investigates possible applications of machine learning when
developing temporally varying background air concentration data for use in air
dispersion models. Applications considered in this study include (1) using
machine learning algorithms to replace high background concentrations which
have occurred due to exceptional events (such as bushfires) and (2) to predict
background concentrations accounting for climate change for use in future
scenario air dispersion models. The results of this study indicate that machine
learning models may be used to predict concentrations that are representative
of typical conditions during exceptional events. Further, when a comparison
against typical approaches was undertaken it was found that machine learning
had the lowest error margin. The study found that climate change adjustments
made to a 2023 dataset had little impact on predicted PM10 values compared
to the unadjusted dataset. However, it highlighted that changes in temperature
and wind speed influenced the predicted concentrations, and emphasised the
potential of machine learning models to predict future background
concentrations affected by climate change. It is the authors’ opinion that
further work is required to determine the implications of these findings with
regards to the application of atmospheric dispersion modelling.

Keywords: machine learning, background air quality data, exceptional events,
climate change projection.

1. Introduction
In recent years the exploration and adoption of
machine learning algorithms has increased within
the air quality research community (Mendez et al.
2023, p. 8). Machine learning algorithms are used in
a variety of ways, including predicting air quality
levels, using Geographic Information System (GIS)
data to classify land use patterns and optimising
environmental monitoring systems. This paper
covers two potential applications of machine
learning which are applied to temporally varying
background air concentration data input into air
dispersion models. It is noted that this study adopts
an exploratory approach, intentionally avoiding an
in-depth analysis of model parameters, with the
primary aim of promoting the application of machine
learning within the field of air quality consulting.

1.1. Machine learning algorithms
Although numerous machine learning approaches
exist to solve different problems, it is common to use
regression-based algorithms to predict air pollutant
concentrations (including decision trees, Random
Forest and K-nearest neighbours algorithms)
(Mendez et al. 2023, p. 5). Regression-based
algorithms work by estimating a function that maps

input data to predicted output values. This allows for
predictions to be made and an understanding of the
underlying patterns in the data.

1.2. Background air concentration data used
in air dispersion models

When undertaking air dispersion modelling, there
are a number of methods available that can be used
to form assumptions about background air
concentrations. In particular, temporally varying data
from ambient air monitoring stations are commonly
input into dispersion models or added to incremental
model predictions.
Often modifications are required to be made to the
background data prior to use. Example modifications
include removing high concentrations recorded
during exceptional events (such as bushfires) and
modifying background data to account for climate
change for use in future scenario air dispersion
models. These two modifications are the basis of this
study and are herein after referred to as test cases.
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2. Objectives
For the two identified test cases, this study
investigates the following:
 Test case 1: Exceptional events: during

exceptional events, can machine learning
algorithms be used to predict values that are
representative of typical conditions?

 Test case 2: Climate change projection: can
machine learning algorithms be used to predict
future scenario background concentrations which
have been influenced by climate change?

3. Current approaches

3.1. Test case 1: Exceptional events
Current guidance in Australia and New Zealand was
reviewed with regards to substituting high
background concentrations which have occurred as
a result of exceptional events. The recommended
approach detailed in Victorian guidance was that
“gaps [due to exceptional events removal] should be
backfilled using the most recent non exceptional
event day (EPA Victoria 2022 p.35). The remaining
guidance reviewed did not provide details on
substituting exceptional events.
In application, the following approaches are
common:
 Linear interpolation: high values are filled in by

estimating them based on neighbouring data
points or the most recent non-exceptional event
day.

 Annual average / 70th percentile: the annual
average or commonly the 70th percentile is
calculated and input into the missing data
periods.

3.2. Test case 2: Climate change projection
To understand the current approach for applying
background concentration data to future scenario
dispersion models, a review of industry best practice
methods as documented in air quality assessments
for major infrastructure projects across Australia was
completed. The review found that the assessment of
future conditions used historic background
concentration data for the same historic period as
the meteorological data used in the model
(Melbourne Metro Rail Authority 2016; State
Government of Victoria 2019). No adjustments were
made to the data to account for climate change and
background concentrations were assumed to remain
unchanged for future years (WestConnex Delivery
Authority 2015).
Whilst this test case explores the influence of climate
change on background pollutant concentrations, it
should be noted that there are numerous additional
factors that could be reasonably expected to

influence future background pollutant
concentrations. These factors include future
changes to industry, societal behaviour and vehicle
number / fleet composition.

4. Methodology

4.1. Model selection
There are many machine learning models available,
however this study has used the Random Forest
machine learning model which is widely adopted for
air quality prediction due to its ability to handle non-
linear relationships between the input variables and
the target variable (i.e., the variable being predicted)
(Gaikar et al. 2023).

4.2. Data sources
Data measured between 2018 to 2023 from the
South Australia Environment Protection Authority
(EPA) monitoring station Le Fevre 1 was used in this
study. The input variables were one hour averaged
meteorology data including: temperature, wind
speed, wind direction, relative humidity and temporal
variables including the date and hour of day. The
target variable was one hour averaged PM10. In other
words, the Random Forest algorithm used the
relationship between the meteorological / temporal
data and PM10 measured at the Le Fevre 1 air quality
monitoring station to predict PM10 concentrations for
the two test cases.

4.3. Train-test split
Train-test split is a technique used in machine
learning to evaluate the performance of a model on
unseen data. The process involves splitting a
dataset into two parts: a training set and a testing
set. The training set, which typically comprises of
80% of the data, is used to train the model so that it
can generalise to new, unseen data. The testing set,
comprising of the remaining 20% of the data, is used
to evaluate the model's performance.

4.4. Model evaluation
The following metrics were used to evaluate the
performance of the Random Forest models.
Root Mean Squared Error (RMSE): quantifies the
difference between the predicted values and the
actual values by calculating the square root of the
average of the squared differences. Lower values of
RMSE indicate better performance of the model.

𝑅𝑀𝑆𝐸 = ට1
𝑛
∑ (𝑦𝑖 − 𝑥𝑖)2𝑛
𝑖=1 (1)

R squared (R2): measures how well a statistical
model predicts an outcome. Specifically, it
represents the proportion of variation in the
dependent variable (the outcome / prediction) that is
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explained by the model. R-squared values range
from 0 to 1, with a value of 1 indicating a perfect fit.

𝑅2 =  1− 𝑅𝑆𝑆
𝑇𝑆𝑆

 = 1− ∑ (𝑦𝑖−𝑥𝑖)2𝑖
∑ (𝑦𝑖−𝑧𝑖)2𝑖

(2)

4.5. Test cases
Test case specific methodologies are outlined in the
below sections.

4.5.1. Test case 1: Exceptional events
Hourly averaged meteorology (wind speed, wind
direction, temperature and relative humidity),
temporal data and PM10 concentrations measured at
the Le Fevre 1 air quality monitoring station between
2018 and 2023 were randomly split into training and
testing sets.
Three scenarios were undertaken in order to analyse
this test case, namely:
 Scenario 1: Training set and testing set include

exceptional events. Provides a baseline model
with no data removed.

 Scenario 2: Training set and testing set exclude
exceptional events. Analyses the difference in
model predictions when exceptional events are
excluded.

 Scenario 3: Training set excludes exceptional
events and testing set includes exceptional
events. Determines the model’s effectiveness in
predicting concentrations during exceptional
events.

For the purpose of this study an exceptional event
was considered to have occurred when the Le
Fevre 1 24-hour average PM10 concentration
exceeded the 50 µg/m³ criterion (Government of
South Australia 2023 p.19) in addition to two other
nearby stations having also exceeded the criterion
for that day (i.e., a total of three or more stations
having exceeded the 24-hour criterion for that day).
The nearby monitoring stations included in the
analysis were Christie Downs, Netley, Adelaide
CBD, Le Fevre 2, Elizabeth and Kensington.

4.5.2. Test case 2: Climate change projection
A meteorology file adjusted to account for climate
change was developed for 2090 which used the
same input parameters as described for the
exceptional events test case. This 2090 file was
created by modifying 2023 meteorology data. The
Guide to Climate Projections for Risk Assessment
and Planning in South Australia 2022 (‘the Guide’)
was used to determine representative adjustments
to temperature and wind speed, accounting for
climate change projections (Department for
Environment and Water 2022). All other parameters
remained unchanged.
Adjusted temperature and wind speed values
aligned with the medium Representative

Concentration Pathway (RCP) 4.5, for the year
2090, representing the mean projected change.
RCP4.5 was chosen to reflect an optimistic scenario
where climate change mitigation measures have
been implemented. Adjustment values were
seasonally dependent and are shown in Table 1.

Table 1. Climate change projection adjustment
values under RCP4.5 for 2090

Season Mean
projected
temperature
(°C) change

Mean
projected
wind speed
(%) change

Summer +1.85 -1.8
Autumn +1.65 -1.8
Winter +1.85 -1.8
Spring +2.1 -1.8

The approach to adjusting temperature and wind
speed, outlined above, was simplified for the
purpose of determining if a difference in PM10
concentration would be predicted for the climate
change adjusted meteorological file (2090)
compared with the unadjusted meteorological file
(2023).
The same model, as described in Test case 1
Scenario 1 was used (i.e, the training set remained
unchanged), however concentrations were instead
predicted on the climate change 2090
meteorological file (i.e. the testing set was updated
to the climate change 2090 meteorological file).

5. Results

5.1. Test case 1: Exceptional events

5.1.1. Model performance
This section provides an overview of model
performance and differences observed between the
scenarios. A summary of the model error parameters
is provided in Table 2 and it can be seen that:
 Scenario 1 vs Scenario 2: A slight improvement

to the model performance occurred when
exceptional events were excluded from both the
training and testing sets (i.e., when exceptional
events were removed from the baseline). This is
observed in the RMSE value decreasing from
11.8 to 8.9 between Scenario 1 and 2.

 Scenario 2 vs Scenario 3: An expected reduction
in model accuracy occurred when the exceptional
events were added back into the testing set
(RMSE increased from 8.9 to 16.8 between
Scenario 2 and 3). This is due to the model
having not been exposed to exceptional events
during training and therefore not predicting
elevated concentrations during these events.
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Table 2. Error parameters - exceptional event
scenarios

Scenario R² RMSE
1 0.47 11.8
2 0.50 8.9
3 0.31 16.8

A further difference between the models was
observed when reviewing the variable importance,
which refers to the significance of each feature (or
predictor variable) in making predictions. In Scenario
1 temperature had the highest variable importance
whereas in Scenario 2 and 3 wind direction had the
highest variable importance.
It was found that across the three scenarios, typically
the algorithm overpredicted lower measured
concentrations (< 25 µg/m³) and underpredicted
higher measured concentrations (> 25 µg/m³).
Figure 1 shows a scatterplot for Scenario 2
(excluding exceptional events) which shows
observed concentrations plotted against predicted
concentrations.

Figure 1. Scenario 2 – observed vs predicted one-
hour average PM10 concentrations

5.1.2. Exceptional event analysis
This section provides an analysis of the model’s
effectiveness to predict conditions representative of
typical conditions during exceptional events
(Scenario 3). The exceptional events with the ten
highest 24-hour average observed concentrations
are analysed in this section.
Table 3 provides a comparison of the observed and
predicted 24-hour average PM10 concentrations on
these days. It can be seen that, with the exception of
the two highest observed days, on average the
predicted concentrations are ~36 µg/m³ lower than
observed concentrations.

Table 3. Exceptional events – observed vs
predicted 24-hour average PM10 concentrations

Date
24-hour average PM10
concentration (µg/m³)

Observed Predicted
13/04/2021 124 31
20/12/2019 107 43
24/05/2021 75 39
23/12/2019 75 28
21/11/2019 72 24
19/09/2019 71 37
20/11/2019 70 41
22/03/2018 69 28
05/04/2019 66 36
01/03/2019 64 40

When analysing the hourly concentrations on these
days (refer to Appendix A), it was found that the
machine learning algorithm did not predict any
extreme peak values - unlike those that were
observed.
In some instances, similar predicted and observed
concentrations were observed prior to or after the
exceptional event occurring (i.e., in the morning
hours if the exceptional event occurred in the
afternoon). Figure 2 shows an example of this
occurring on 21/11/2019 and it can also be seen on
19/09/2019 and 22/03/2018 in Appendix A.

Figure 2. Observed vs predicted hourly PM10
concentrations – 21/11/2019

There were some instances where, prior to the
exceptional event occurring, the predicted
concentrations were incorrectly higher than the
observed concentrations. An example of this
occurred on 05/04/2019, as shown in Appendix A.

5.1.3. Comparison against current approaches
A comparison of the machine learning approach
against two typical approaches: applying the 70th
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percentile, and applying the average of the two valid
24-hour averages either side of the exceptional
event was undertaken. This analysis was applied to
the ten highest 24-hour average observed
concentrations, resulting from exceptional events.
It was found that applying the 70th percentile typically
resulted in the lowest background concentrations
and machine learning typically resulted in the
highest concentrations. The average of the valid day
before and after typically fell between these two.
It is not possible to determine which of these
approaches is most accurate as it is unknown what
the concentrations would have been on these days
if the exceptional events did not occur. Therefore, in
order to identify the most accurate method, the
analysis was extended to the entire dataset,
excluding exceptional events.
A summary of the results of this analysis is provided
in Table 4. It was found that when comparing against
observed values, the 70th percentile approach
resulted in the highest error (RMSE = 9.6) whilst use
of machine learning resulted in the lowest error
(RMSE = 5.1). The error associated with applying
the average either side was between these two
(RMSE = 7).
The corresponding scatterplots for the average
either side and machine learning are provided in
Appendix B.1.

Table 4. Error parameters – current approaches
vs machine learning

Scenario R² RMSE
70th percentile 0 9.6
Average either side 0.42 7.0
Machine learning 0.74 5.1

5.2. Test case 2: Climate change projection
This section provides an analysis of the ability of
machine learning to predict appropriate future
scenario background concentrations which have
been influenced by climate change.

5.2.1. Comparison of observed (2023) and future
(2090) predicted concentrations

Figure 3 shows the observed 24-hour PM10
concentrations for 2023 compared against the future
(2090) predicted 24-hour PM10 concentrations for the
climate change adjusted dataset. Future predicted
values were generally higher than observed
concentrations for values less than 18 µg/m³, and
lower than observed concentrations for values
greater than 18 µg/m³.

Figure 3: 24-hour average 2023 observed vs
future (2090) predicted PM10 concentrations

The two datasets had an R2 value of 0.7. Given the
climate change adjustments, variability between the
datasets was expected.

5.2.2. Comparison of predicted (2023) and future
(2090) predicted concentrations

To gain further insight into the influence of the
climate change adjustments on the predictions, a
comparison of 2023 predicted PM10 concentrations
(with no climate change adjustment) was undertaken
against future (2090) predicted PM10 concentrations
(with climate change adjustment), as shown in
Figure 4.
It can be seen that there was less variability between
these two data sets (R2 = 0.9). Similarly, future 2090
predicted values were generally higher than 2023
predicted concentrations for values less than 20
µg/m³ and lower than predicted concentrations for
values greater than 20 µg/m³, although this trend
was less distinct than comparisons between future
predicted and observed data.

Figure 4: 24-hour 2023 predicted vs future (2090)
predicted PM10 concentrations
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5.2.3. Analysis of the influence of climate change
adjustments on predictions

The influence of the adjusted temperature and wind
speed values were analysed to further understand
the cause of variation between future (2090)
predicted and 2023 observed concentrations.
Appendix B.2 shows how future (2090) predictions
vary from 2023 predictions when temperature
increases and wind speed decreases with values
split into four quantiles. The observed trends match
those between future (2090) and 2023 predicted
concentrations, with R2 values of approximately 0.9
for all quantiles. This supports that temperature and
wind speed adjustments in the climate change
dataset caused the differences in concentrations
between future (2090) and 2023 predicted
concentrations.

5.2.4. Summary
The analysis undertaken shows that climate change
adjustments made to temperature and wind speed
values in a 2023 dataset to reflect 2090 led to
differences in predicted PM10 concentrations
compared to an unadjusted 2023 dataset. However,
the absolute change in concentration was not
significant.
This study shows that machine learning models may
help to predict future background concentrations
affected by climate change. However, without
knowing future PM10 values, the accuracy of these
predictions cannot be determined. Further
investigation is needed to understand when this
approach is most effective for industry applications.

6. Conclusions
This study explored two specific applications of
using machine learning to predict air concentrations
input as background data into air dispersion models.
The results of this study indicate that machine
learning models may be used to predict
concentrations that are representative of typical
conditions during exceptional events. Further, when
a comparison against approaches typically used was
undertaken it was found that using machine learning
had the lowest error margin.
The study found that climate change adjustments
made to a 2023 dataset had little impact on predicted
PM10 values compared to the unadjusted dataset.
However, it highlighted that changes in temperature
and wind speed influenced the predicted
concentrations, and emphasised the potential of
machine learning models to predict future
background concentrations affected by climate
change.
It is the authors’ opinion that further work is required
to determine the implications of these findings with

regards to the application of atmospheric dispersion
modelling.
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Appendix A – Exceptional Events Graphs
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Appendix B – Supplementary Graphs

B.1 – Test case 1: Exceptional events – comparison against current approaches

24-hour average observed vs average either
side PM10 concentrations

24-hour average observed vs machine learning
PM10 concentrations

B.2 – Test case 2: Climate change projection – influence of climate change adjustments on
predictions

Influence of temperature change on 2023
predicted vs. future predicted PM10 values

(µg/m3)

Influence of wind speed change on 2023
predicted vs. future predicted PM10 values

(m/s)


	1. Introduction
	1.1. Machine learning algorithms
	1.2. Background air concentration data used in air dispersion models

	2. Objectives
	3. Current approaches
	3.1. Test case 1: Exceptional events
	3.2. Test case 2: Climate change projection

	4. Methodology
	4.1. Model selection
	4.2. Data sources
	4.3. Train-test split
	4.4. Model evaluation
	4.5. Test cases
	4.5.1. Test case 1: Exceptional events
	4.5.2. Test case 2: Climate change projection


	5. Results
	5.1. Test case 1: Exceptional events
	5.1.1. Model performance
	5.1.2. Exceptional event analysis
	5.1.3. Comparison against current approaches

	5.2. Test case 2: Climate change projection
	5.2.1. Comparison of observed (2023) and future (2090) predicted concentrations
	5.2.2. Comparison of predicted (2023) and future (2090) predicted concentrations
	5.2.3. Analysis of the influence of climate change adjustments on predictions
	5.2.4. Summary



	6. Conclusions
	B.1 – Test case 1: Exceptional events – comparison against current approaches
	B.2 – Test case 2: Climate change projection – influence of climate change adjustments on predictions
	/Influence of temperature change on 2023 predicted vs. future predicted PM10 values (µg/m3)
	/Influence of wind speed change on 2023 predicted vs. future predicted PM10 values (m/s)


